menu-technics

Вход для пользователей

Сейчас на сайте

Сейчас на сайте 0 пользователей и 1 гость.

Чудеса нанотехники

Ровно 100 лет назад знаменитый физик Макс Планк (Max Planck) впервые приоткрыл дверь в мир атомов и элементарных частиц. Его квантовая теория позволила предположить, что эта сфера подчинена новым, удивительным законам. Сегодня учёные и исследователи во всём мире свободно обращаются с этими законами, позволяя себе манипулировать "нанокосмосом". Они создают шарики диаметром в 1 нанометр — одну миллиардную часть метра - и создают надписи из отдельных атомов. Ещё в 1959 году, когда доработанная квантовая механика Планка уже сделала возможным появление атомной электростанции и уже была произведена первая ядерная бомбардировка, американский физик Ричард Фейнман (Richard Feynman) заявил: "Пока мы вынуждены пользоваться атомарными структурами, которые предлагает нам природа". И добавил: "Но в принципе физик мог бы синтезировать любое вещество по заданной химической формуле".Компьютерная модель наношестеренок (проект NASA).Компьютерная модель наношестеренок (проект NASA). Знаменитая лекция Фейнмана, известная под названием "Там, внизу, ещё много места" считается сегодня стартовой точкой в борьбе за покорение мира атомов и молекул. Лекцию Фейнмана можно было бы посчитать курьезом из прошлого, как и приз в $1000, который он назначил тому, кто впервые запишет страницу из книги на булавочной головке, что, кстати, осуществилось уже в 1964 году. Но дальнейший прогресс так ускорил прорыв в "нанокосмос", что сегодня эта область исследований не может оставаться незамеченной. Само понятие же "нанотехника" было введено в 1974 году японцем Норио Танигучи (Norio Taniguchi). Первые средства для нанотехники были изобретены в швейцарских лабораториях фирмы IBM. В 1982 году был создан растровый туннельный микроскоп, за что его создатели четырьмя годами позже получили Нобелевскую премию, а в 1986 году - атомный силовой микроскоп. В то время, как в электронный микроскоп атомарные размеры можно рассмотреть лишь при определённых условиях, новые зонды дают более точную картину. "Принцип атомного силового микроскопа напоминает обычный проигрыватель пластинок", - говорит один из его создателей, Герд Бинниг. Однако слово "микроскоп" вводит в заблуждение. Нанозонды дают возможность не только увидеть мир атомов, но и изменять его. "Растровые зонды-микроскопы служат посредником между нами и наномиром", - говорит Гаральд Фукс (Harald Fuchs), физик из Мюнхенского университета, руководитель Центра нанотехнологии. Одной из самых важных особенностей квантовой физики наших дней является то, что любое наблюдение - это манипуляция с наблюдаемым объектом. Тот, кто измеряет, к примеру, импульс атома гелия, вступает во взаимодействие с ним и изменяет его первоначальное состояние. В растровых зондах-микроскопах наблюдение и манипуляция стали нераздельны, как две стороны одной медали: контакт ультракрошечного кончика микроскопа с атомом действует и на объект, и на инструмент. То, что технизация наномира идёт так стремительно, зависит не только от неуёмного любопытства естествоиспытателей, которое рассматривалось Фейнманом как центральный мотив научного поиска. В первую очередь она зависит от развития информационного общества, порождающего огромные объёмы информации, которые должны всё быстрее обрабатываться. Поскольку информация существует в нераздельной связи с реальными запоминающими устройствами и процессорами, это рано или поздно приводит к огромной проблеме занимаемого ею места. Современные кремниевые чипы могут при всевозможных технических ухищрениях уменьшаться ещё примерно до 2012 года. Но при ширине дорожки в 40-50 нанометров наступит конец. После этого предела наступает квантовомеханическая помеха: электроны пробивают разделительные слои в транзисторах, что равнозначно короткому замыканию. Выходом могли бы послужить наночипы, в которых вместо кремния используются различные углеродные соединения размером в несколько нанометров. Есть уже лабораторные образцы первых молекулярных электронных деталей: транзистор из крохотной углеродной трубочки диаметром в один нанометр. Физики из города Делфт, Нидерланды, смогли превратить такие трубочки в необходимый для транзисторов контакт металл-полупроводник. Эксперименты ведутся также и с фуллеренами, открытыми в 1985 году молекулами углерода в форме шара. Исследовательская группа из калифорнийского университета Беркли смогла в прошлом году превратить "мячик" молекулы С60 (атомы углерода в ней расположены в углах пяти- и шестиугольников, образуя форму кусочков кожи, из которых сшит футбольный мяч), зажатой между золотыми электродами, в одноэлектронный транзистор. Между тем, известен целый ряд органических молекулярных групп, которые могут функционировать как выпрямитель, проводящая шина или запоминающее устройство. Для хранения одного бита информации теоретически нужна всего одна молекула. Изготовленный таким образом накопитель на жёстком диске мог бы во много раз превзойти по ёмкости сегодняшние аналоги. Нано-ЗУ, работающий на механическом принципе, изобрели учёные из IBM под руководством Герда Биннига (Gerd Binnig). Так называемый миллипед представляет собой растр из 1024 рычажков силового микроскопа. Если нужно записать "1", их кончики продавливают отверстие в мягком слое полимера. Для считывания битов миллипед проверяет поверхность на наличие дырочек. Если рычажок попадает в отверстие, его температура, а вместе с тем и сопротивление, изменяются, а его уже можно измерить. Таким способом можно получить плотность записи до 80 Гб на квадратный сантиметр (сравните с максимально достижимой сегодня ёмкостью 8 Гб/кв. см). Через 3 года IBM изготовит миллипед с 4000 зондов, который можно будет применять в новом поколении портативной техники. По мнению Биннига, легко можно представить себе плату с миллионом зондов.
Если мы хотим добиться с помощью крошечных систем не просто наноэффекта, а чего-то большего, нужно связать их в крупные конгломераты. Чтобы создать функционирующий квантовый точечный лазер, необходимо в кратчайший срок произвести до 200 миллиардов наноструктур на квадратный сантиметр. На то, чтобы сложить, кирпичик за кирпичиком, с помощью силового микроскопа пирамиду размером в один нанометр из атомов полупроводника, в которые включён один электрон, не хватило бы человеческой жизни. В природе это достигается путем самоорганизации. Принцип, стоящий за этим, очень прост. Все физические системы стремятся к термодинамическому равновесию. Организовать равновесное состояние таким образом, чтобы желаемый продукт получился естественным путем — вот в чём заключается работа наноинженера. К примеру, на какой-то поверхности при заданных физических условиях выращивают кристалл полупроводника с изменённым расстоянием между отдельными атомами, который по достижении определённой толщины распадается на множество практически одинаковых островков. Так "одним ударом" получается множество квантовых точек. Химики тоже активно интересуются наноинженерией. Ведь если создавать молекулярные структуры в наномасштабах и подвергать их анализу, становится возможным появление совершенно новых материалов. Например, обычное золото при комнатной температуре не является катализатором химических реакций, а частички золота размером от 3 до 5 нанометров — отличный катализатор. Одна японская фирма использовала этот эффект для изготовления оригинального продукта. Её "пожиратель запаха" с помощью наночастиц золота разлагает молекулы туалетных испарений. Нанокатализаторы могли бы также предотвратить потери и повысить эффективность многих технологических процессов. Почти 20% сырой нефти остаются непереработанными по причине несовершенной технологии очистки. Сейчас ведутся работы по созданию специальных керамических цилиндров, пронизанных нанопорами, способных удержать только одну молекулу. Если пропустить сырую нефть через такой катализатор, то ни одна молекулярная цепочка не уйдёт от очистки, и эффективность крекинга достигнет 100%. В том, что касается новых материалов, наноинженерия — это уже не просто мечты. Тончайшие, прозрачные и электропроводящие наноматериалы, которые невозможно поцарапать и к которым не пристаёт грязь (так называемый эффект лотоса), а также нанопорошок — это уже известные продукты. Без нанопорошка не было бы чипов Athlon от AMD или Intel Pentium. При химико-механической обработке кремниевая плата, из которой потом будут вырезаны процессоры, перед каждым этапом наращивания полируется таким порошком из йодида серы. Посредством нанотехнологий можно оптимизировать даже процесс легирования металлов. Так, ещё в средние века были открыты супертонкие углеродные добавки, которые закаляли клинки. Но то, что раньше было случайным продуктом, рождавшимся между молотом и наковальней, сейчас, напротив, становится новым направлением целенаправленного проектирования материалов. Конечно, инструментарий нанотехнологий немыслим без компьютеров. И в этом — знак окончания долгого периода в истории науки. Тысячелетиями воздействие инструмента было непосредственно ощутимо, к инструменту нужно было в прямом смысле приложить руку, то есть взять молоток, пилу, закрутить винт, поднять блок; позже это воздействие было, по крайней мере, видимо, пример — паровая машина.